1	(a	(i)	<u>concentration</u> of thiosulfate is proportional to volume of thiosulfate solution added (when total volume is same in all experiments) / <u>concentration</u> of acid always the same [2]		
			for comments based on amount / to make experiments fair / comparable allow [1]		
		(ii)	240 s	[1]	
		(iii)	decreases/reaction slower because concentration of thiosulfate decreases frequency/chances/rate of collisions decreases	[1] [1] [1]	
			one mark can be scored for less/smaller amount/smaller volume of thiosulfate collisions	/ less	
	(b)	rate	e increases with temperature (or at 42 °C) ORA	[1]	
		•	ticles/molecules/ions move faster or gain energy / ORA n't accept reactants or atoms)	[1]	
		mor	re collisions / ORA	[1]	
		grea	t mark is for qualification of the collisions) i.e. ater frequency / more per unit time/more often /greater chance/more likely/more co e/more effective/more successful/more with activation energy / ORA	ollision [1]	
2	(a)) (i)	rate of reaction decreases / gradient decreases because concentration of bromine decreases reaction stops because all bromine is used up	[1] [1] [1]	
		(ii)	initial rate greater / gradient greater because bigger surface area / more particles of iron exposed	[1] [1]	
			or: final mass the same because mass of bromine is the same so the same mass of iron is used	[1] [1]	
		(iii)	increase / decrease / change rate of stirring / not stirred measure new rate / compare results	[1] [1]	
	(b)) (i)	Fe to Fe ²⁺ because oxidation is electron loss / increase in oxidation number	[1] [1]	
		(ii)	Fe	[1]	
	(c)) add Fe ² Fe ³		[1] [1] [1]	

3	(a	(i)	bubbles / effervescence / hydrogen / gas pushes up / lifts metal	[1	
		(ii)	does not react with <u>acid</u> / zinc and iron react with <u>acid</u> not just unreactive	[1	
	(b)	(with copper / first experiment	[1	
		(ii)	copper acts as a <u>catalyst</u>	[1	
	(c)		smaller gradient not rate is slower	[1	
		(ii)	same final volume of hydrogen / same level (on graph)	[1	
	(d)	temperature / heat increase temperature – reaction faster particles have more energy / particles move faster / particles collide more frequently / more particles have enough energy to react not more excited			
		acc	ept arguments for a decrease in temperature	[1]	
		powdered greater surface area greater collision rate / more particles exposed (to acid) any two not concentration / light / catalyst / pressure			

(a (i) red brown or orange to colourless [1] **not** just bromine decolourised yellow (not dark) / white solid / precipitate / goes cloudy [1] brown to yellow with no mention of solid/precipitate scores = [1] (ii) $Br_2 + Na_2S \rightarrow 2NaBr + S$ [1] (iii) look for two comments sulfide (ion) / sulfur (ion) loses electrons [1] not sodium sulfide bromine accepts them [1] (b) (i) oxidation [1] not redox (ii) hydrogen / H₂ not H [1] (iii) iron(II) hydroxide / ferrous hydroxide [1] (iv) $4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$ [1] (v) oxidation number or state or valency increases / electron loss / Fe²⁺ to Fe³⁺ [1] not gains oxygen (vi) sacrificial protection or zinc is sacrificed / zinc corrodes not iron or zinc corrodes therefore iron doesn't / not just zinc rusts zinc is oxidised in preference to iron / zinc reacts with oxygen and water in preference to iron / zinc more reactive or electropositive than iron / zinc forms ions more readily than iron or zinc loses electrons more readily than iron / electrons move on to iron / iron is cathode or zinc is anode / any three [3]

- 5 **(i)** chemical [1]
 - (ii) from right to left [1] not through salt bridge
 - (iii) $Br_2 + 2e \rightarrow 2Br$ for Br- as product [1]
 - (iv) reduction because electron gain [1]
 / because oxidation number decreases
 need both points
 - (v) Fe³⁺
 - (vi) any correct discussion of the reactivity of the halogens
 e.g. the more reactive the halogen the higher the volta
 not better conductor

[Total: 7]